

Chapter 9 Multiple-Choice Practice Test

Directions: This practice test features multiple-choice questions based on the content in Chapter 9: Parametric Equations and Polar Coordinates.

- **9.1**: Parametric Equations
- **9.2**: Differentiating and Integrating Parametric Functions
- **9.3**: Polar Coordinates and Functions
- 9.4: Differentiating Polar Functions
- 9.5: Areas with Polar Curves
- **9.6**: Additional Calculus with Parametric and Polar

For each question, select the best answer provided and do your figuring in the margins. If you encounter difficulties with a question, then move on and return to it later. Follow these guidelines:

- Do not use a calculator of any kind. All of these problems are designed to contain simple numbers.
- Adhere to the time limit of 90 minutes.
- After you complete all the questions, compare your responses to the answer key on the last page. Note any topics that require revision.

Visit valscalc.com to access a free online calculus textbook and additional multiple-choice and free-response practice exams.

Parametric Equations and Polar Coordinates

Number of Questions—50

NO CALCULATOR

- 1. A point given in polar coordinates by $(6,300^{\circ})$ is expressed in Cartesian coordinates by
 - (A) $\left(-3, 3\sqrt{3}\right)$
 - (B) $\left(3, 3\sqrt{3}\right)$
 - (C) $\left(3, -3\sqrt{3}\right)$
 - (D) $\left(3\sqrt{3},3\right)$
 - (E) $(3\sqrt{3}, -3)$

- 2. The polar equation for the line y = 12 is
 - (A) r = 12
 - (B) $r = 12\cos\theta$
 - (C) $r = 12 \sin \theta$
 - (D) $r = 12 \sec \theta$
 - (E) $r = 12 \csc \theta$

- 3. The polar curve $r = \cos 5\theta$ is
 - (A) a limacon with one loop
 - (B) a circle of radius 1
 - (C) a circle of radius 5
 - (D) a rose with five petals
 - (E) a rose with 10 petals

- **4.** If $\omega \neq 0$, then which set of equations parameterizes the ellipse $\frac{x^2}{64} + \frac{y^2}{81} = 1$?
 - (A) $x = 8 \sin \omega t$, $y = 8 \sin \omega t$
 - (B) $x = 8 \sin \omega t$, $y = 8 \cos \omega t$
 - (C) $x = 8 \sin \omega t$, $y = 9 \cos \omega t$
 - (D) $x = 9 \sin \omega t$, $y = 8 \sin \omega t$
 - (E) $x = 9 \sin \omega t$, $y = 9 \cos \omega t$

- **5.** For the polar curve $r = \cos^3 \theta$, $\frac{dx}{d\theta} =$
 - (A) $-4\sin\theta\cos^2\theta$
 - (B) $-4\sin\theta\cos^3\theta$
 - (C) $4\sin\theta\cos^3\theta$
 - (D) $\cos^4 \theta 3\sin^2 \theta \cos^2 \theta$
 - (E) $\cos^4 \theta + 3\sin^2 \theta \cos^2 \theta$

- **6.** If $x = t^2 + 4$ and $y = 3t^3 6t$, then $\frac{dy}{dx} =$

- (A) $9t^2 6$ (B) $\frac{9t^2 6}{2t}$ (C) $\frac{2t}{9t^2 6}$ (D) $\frac{3t^3 6t}{t^2 + 4}$ (E) $\frac{t^2 + 4}{3t^3 6t}$

- 7. The line y = 4x is represented in polar coordinates by
 - (A) r = 4
 - (B) $r = \tan^{-1} 4$
 - (C) $r = 4\theta$
 - (D) $\theta = 4$
 - (E) $\theta = \tan^{-1} 4$

- 8. If $r = \cot \theta$, then $\frac{d^2y}{d\theta^2} =$
 - (A) $-\sin\theta$
 - (B) $-\cos\theta$
 - (C) $\sin \theta$
 - (D) $\cos \theta$
 - (E) $2\csc^2\theta\cot\theta$

- **9.** If $x = \cos 2t$ and y = t 6, then
 - $(A) x = \cos(y+6)$
 - (B) $x = \cos(y 6)$
 - $(C) x = \cos(y 12)$
 - (D) $x = \cos(2y + 12)$
 - $(E) x = \cos(2y 12)$

- **10.** If $f(\theta) = 1 + 2\cos\theta$, then which statement is true about the polar curve $r = f(\theta)$?
 - (A) Since $f\left(\frac{\pi}{4}\right) > 0$ and $f'\left(\frac{\pi}{4}\right) < 0$, the graph is moving toward the pole when $\theta = \frac{\pi}{4}$.
 - (B) Since $f\left(\frac{\pi}{4}\right) > 0$ and $f'\left(\frac{\pi}{4}\right) < 0$, the graph is moving away from the pole when $\theta = \frac{\pi}{4}$.
 - (C) Since $f\left(\frac{\pi}{4}\right) > 0$ and $f'\left(\frac{\pi}{4}\right) > 0$, the graph is moving toward the pole when $\theta = \frac{\pi}{4}$.
 - (D) Since $f\left(\frac{\pi}{4}\right) < 0$ and $f'\left(\frac{\pi}{4}\right) < 0$, the graph is moving away from the pole when $\theta = \frac{\pi}{4}$.
 - (E) Since $f\left(\frac{\pi}{4}\right) < 0$ and $f'\left(\frac{\pi}{4}\right) > 0$, the graph is moving away from the pole when $\theta = \frac{\pi}{4}$.

11. On a platform 5 feet above the ground, a ball is thrown upward at an angle of 30° above the horizontal with a speed of 40 feet per second. If x is the ball's horizontal position from the platform and y is its height above the ground, then which set of parametric equations represents the ball's motion?

(A)
$$x = 20t$$
, $y = -16t^2 + 20t\sqrt{3} + 5$

(B)
$$x = 20t$$
, $y = -16t^2 - 20t\sqrt{3} + 5$

(C)
$$x = 20t\sqrt{3}$$
, $y = -16t^2 - 20t + 5$

(D)
$$x = 20t\sqrt{3}$$
, $y = -16t^2 + 20t + 5$

(E)
$$x = 40t$$
, $y = -16t^2 + 40t + 5$

12. Which limacon has an inner loop?

(A)
$$r = 2 - \sin \theta$$

(B)
$$r = 1 - \cos \theta$$

(C)
$$r = 6 + 6\cos\theta$$

(D)
$$r = 8 + 4 \sin \theta$$

(E)
$$r = 3 - 8\cos\theta$$

13. If x = 3t + 7 and $y = \sqrt{t^3 - t - 5}$, then

(A)
$$y = \sqrt{\frac{x^3}{27} - \frac{x}{3} - 5}$$

(B)
$$y = \sqrt{(x-7)^3 - (x-7) - 5}$$

(C)
$$y = \sqrt{(3x+7)^3 - (3x+7) - 5}$$

(D)
$$y = \sqrt{\frac{(x+7)^3}{27} - \frac{x+7}{3} - 5}$$

(E)
$$y = \sqrt{\frac{(x-7)^3}{27} - \frac{x-7}{3} - 5}$$

- **14.** For the polar curve $r = 3 + \cos \theta$, $\frac{dy}{dx} =$
 - (A) $\frac{-3\cos\theta \cos 2\theta}{3\sin\theta + \sin 2\theta}$
 - (B) $\frac{-3\cos\theta \cos 2\theta}{3\cos\theta + \cos^2\theta}$
 - (C) $\frac{3\cos\theta + \cos^2\theta}{3\sin\theta + \sin\theta\cos\theta}$
 - (D) $\frac{3\sin\theta + \sin 2\theta}{-3\cos\theta \cos 2\theta}$
 - (E) $\frac{3\sin\theta + \sin\theta\cos\theta}{3\cos\theta + \cos^2\theta}$

- 15. A curve is parameterized by the equations $x = \sqrt{t+3}$ and $y = 3t^2 8t + 2$. When x = 2, $\frac{dy}{dx} = 1$
- (A) -8 (B) $-\frac{3}{2}$ (C) $-\frac{2}{\sqrt{5}}$ (D) 4 (E) $8\sqrt{5}$

- **16.** What is the length of the curve parameterized by $x = \frac{2}{3}t^{3/2} + 8$ and $y = 2t^{3/2} 4$ on the interval $0 \leqslant t \leqslant 2$?

 - (A) $\frac{2}{3}\sqrt{10}$ (B) $\frac{2}{3}\sqrt{80}$ (C) $\frac{8}{3}\sqrt{8}$ (D) $\frac{8}{3}\sqrt{10}$ (E) $\frac{8}{3}\sqrt{80}$

- 17. Which forms of symmetry does the polar curve $r = 2 3 \sin \theta$ exhibit?
 - I. Symmetry about the *x*-axis
 - II. Symmetry about the *y*-axis
 - III. Symmetry about the origin
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, and III

- **18.** The area enclosed by $r = 2 + \cos \theta$ is
 - (A) 2π
- (B) 4π
- (C) $\frac{9\pi}{4}$ (D) $\frac{9\pi}{2}$
- (E) 9π

19. Which equation represents the tangent line to the curve parameterized by $x = \sqrt[3]{t}$ and $y = t^3 - 4t^2 + 8$ at t = 1?

(A)
$$y-5=-15(x-1)$$

(B)
$$y-5=-5(x-1)$$

(C)
$$y-5=-\frac{1}{15}(x-1)$$

(D)
$$y-5=\frac{1}{3}(x-1)$$

(E)
$$y-5=5(x-1)$$

20. A particle travels counterclockwise along a circle of radius 4 centered at (5, -2). The particle begins at the top of the circle and completes one revolution over $0 \le t \le 3$. Which parametric equations describe the particle's motion?

(A)
$$x = 5 + 4\cos\left(\frac{2\pi}{3}t\right)$$
, $y = -2 + 4\sin\left(\frac{2\pi}{3}t\right)$

(B)
$$x = 5 - 4\cos\left(\frac{2\pi}{3}t\right)$$
, $y = -2 + 4\sin\left(\frac{2\pi}{3}t\right)$

(C)
$$x = 5 + 4\sin\left(\frac{2\pi}{3}t\right)$$
, $y = -2 + 4\cos\left(\frac{2\pi}{3}t\right)$

(D)
$$x = 5 - 4\sin\left(\frac{2\pi}{3}t\right)$$
, $y = -2 + 4\cos\left(\frac{2\pi}{3}t\right)$

(E)
$$x = 5 - 4\sin\left(\frac{2\pi}{3}t\right)$$
, $y = -2 - 4\cos\left(\frac{2\pi}{3}t\right)$

21. An equation of the line tangent to the polar curve $r = 4 \sin \theta$ at $\theta = \frac{\pi}{6}$ is

$$(A) y-1=2\left(x-\sqrt{3}\right)$$

(B)
$$y - 1 = \sqrt{3} \left(x - \sqrt{3} \right)$$

(C)
$$y-1 = \frac{1}{\sqrt{3}} \left(x - \sqrt{3} \right)$$

(D)
$$y - \sqrt{3} = \sqrt{3}(x-1)$$

(E)
$$y - \sqrt{3} = \frac{1}{\sqrt{3}}(x-1)$$

- 22. When $\theta = \frac{\pi}{3}$, the distance between the polar curves $r = 5\cos\theta$ and $r = 1 + 2\cos\theta$ is

- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) 2 (D) $\frac{5}{2}$ (E) $\frac{3\sqrt{3}}{2}$

- **23.** The area of the region enclosed by the curve $x = \sin t$, y = 2t for $0 \le t \le \pi$ is
 - (A) $\frac{1}{2}$
- (B) 1
- (C) 2
- (D) 4
- (E) 8

- **24.** If $x = 3\cos 2t$ and $y = 2\sin 2t$, then $\frac{d^2y}{dx^2} =$
 - $(A) -\frac{2}{9}\csc^3 2t$
 - (B) $-\frac{2}{3}\cot 2t$
 - (C) $\frac{2}{3} \tan 2t$
 - (D) $\frac{4}{3}\csc^2 2t$
 - (E) $\frac{1}{3}\csc^2 2t \sec 2t$

- **25.** The arc length of the curve parameterized by x = 6t + 5 and $y = 8 \frac{16}{3}t^{3/2}$ for $0 \le t \le 1$ is

- (A) $\frac{1}{16}$ (B) 4 (C) $\frac{49}{6}$ (D) 10 (E) $\frac{1568}{3}$

- **26.** The area of the region that is outside the cardioid $r = 4 4\cos\theta$ and also inside the circle r = 4 is
 - (A) 4π
- (B) 8π
- (C) $16-2\pi$
- (D) $32-4\pi$ (E) $64-8\pi$

- **27.** If $x = 6 e^{-8t}$ and $\frac{d^5y}{dx^5} = 3 \ln t$, then $\frac{d^6y}{dx^6} =$

- (A) $\frac{3}{8te^{-8t}}$ (B) $\frac{3}{6t te^{-8t}}$ (C) $\frac{3\ln t}{6 e^{-8t}}$ (D) $\frac{8te^{-8t}}{3}$ (E) $\frac{6 e^{-8t}}{3\ln t}$

- **28.** The area enclosed by $r^2 = 8\cos 2\theta$ is
 - (A) $\sqrt{2}$ (B) $\sqrt{8}$ (C) 2 (D) 4 (E) 8

29. A cycloid has a peak at $(10\pi, 20)$. Parametric equations for the cycloid are

(A)
$$x = 10(1 - \cos \theta), \quad y = 10(\theta - \sin \theta)$$

(B)
$$x = 10(\theta - \sin \theta), \quad y = 10(1 - \cos \theta)$$

(C)
$$x = 20(1 - \cos \theta)$$
, $y = 20(1 - \sin \theta)$

(D)
$$x = 20(1 - \cos \theta), \quad y = 20(\theta - \sin \theta)$$

(E)
$$x = 20(\theta - \sin \theta), \quad y = 20(1 - \cos \theta)$$

30. The graph parameterized by $x = 6 - 4t^2$ and $y = t^4 - 2$ is concave up for

(A)
$$t < 0$$

(B)
$$t < \frac{\sqrt{6}}{2}$$

(C)
$$t > 0$$

(D)
$$t > \sqrt[4]{2}$$

(E)
$$-\infty < t < \infty$$

31. Which integral equals the length of the polar curve $r = \cos^2 \theta$ over $0 \le \theta \le \frac{\pi}{2}$?

(A)
$$\int_0^{\pi/2} \sqrt{1 + 4\sin^2\theta\cos^2\theta} \,d\theta$$

(B)
$$\int_0^{\pi/2} \sqrt{\cos^2 \theta + 2 \sin \theta \cos \theta} \, d\theta$$

(C)
$$\int_0^{\pi/2} \sqrt{\cos^2 \theta - 2 \sin \theta \cos \theta} \, d\theta$$

(D)
$$\int_0^{\pi/2} \sqrt{\cos^4 \theta + 4 \sin^2 \theta \cos^2 \theta} \, d\theta$$

(E)
$$\int_0^{\pi/2} \sqrt{\cos^4 \theta - 4 \sin^2 \theta \cos^2 \theta} \, d\theta$$

32. Half of a petal on the curve $r = \cos 2\theta$ is revolved around the *x*-axis to generate a solid whose surface area is given by

(A)
$$2\pi \int_0^{\pi/4} \sin\theta \cos 2\theta \sqrt{1 + 4\sin^2 2\theta} d\theta$$

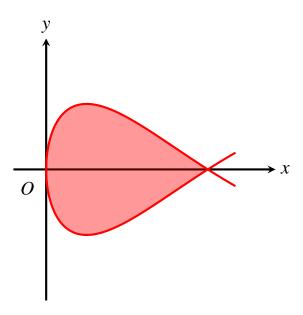
(B)
$$2\pi \int_0^{\pi/4} \sin\theta \cos 2\theta \sqrt{\cos^2 2\theta - 4\sin^2 2\theta} d\theta$$

(C)
$$2\pi \int_0^{\pi/4} \sin\theta \cos 2\theta \sqrt{\cos^2 2\theta + 4\sin^2 2\theta} d\theta$$

(D)
$$2\pi \int_0^{\pi/4} \cos\theta \cos 2\theta \sqrt{\cos^2 2\theta - 4\sin^2 2\theta} d\theta$$

(E)
$$2\pi \int_0^{\pi/4} \cos\theta \cos 2\theta \sqrt{\cos^2 2\theta + 4\sin^2 2\theta} d\theta$$

33. The graph parameterized by $x = t^2$ and $y = \sin 2t$ traces out a teardrop, as shown below.



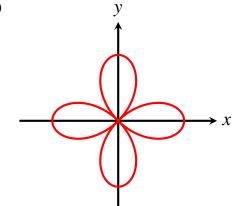
The area of the teardrop is

- (A) $\frac{\pi}{8}$
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{2}$
- (D) π
- (E) 2π

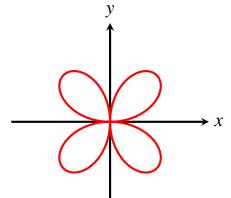
- **34.** The area of the region enclosed by $r = 4\cos\theta$ and $r = 4\sin\theta$ is
 - (A) 4
- (B) $\pi + 4$ (C) $2\pi 2$ (D) $2\pi 4$ (E) $2\pi + 4$

35. Which choice is the graph of $r = \sin 4\theta$?

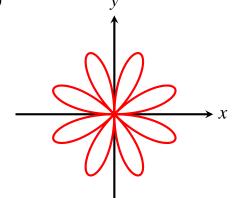
(A)



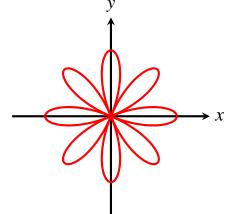
(B)



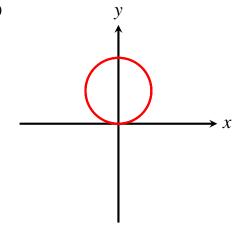
(C)



(D)



(E)



- **36.** The area enclosed by the inner loop of the limacon $r = 2 4\cos\theta$ is
 - (A) $2\pi + 3\sqrt{3}$
 - (B) $2\pi 3\sqrt{3}$
 - (C) $4\pi + 6\sqrt{3}$
 - (D) $4\pi 6\sqrt{3}$
 - (E) $8\pi 12\sqrt{3}$

- **37.** The graph of $(x^2 + y^2)^3 = 4x^2y^2$ is identical to which polar curve?
 - (A) $r = \sin \theta$
 - (B) $r = \sin 2\theta$
 - (C) $r = \cos 2\theta$
 - (D) $r = 2\sin 2\theta$
 - (E) $r = 2\cos 2\theta$

- **38.** The area of the region bounded by $r = 4\theta$, where $0 \le \theta \le \pi$, and the x-axis is

- (A) $\frac{\pi^2}{2}$ (B) π^2 (C) $\frac{4\pi^3}{3}$ (D) $\frac{8\pi^3}{3}$ (E) $\frac{16\pi^3}{3}$

- **39.** For $0 \le \theta \le \frac{\pi}{2}$, the tangent to the polar curve $r = 4 \sin \theta$ is 1 when
 - (A) $\theta = \frac{\pi}{16}$ (B) $\theta = \frac{\pi}{8}$ (C) $\theta = \frac{\pi}{6}$ (D) $\theta = \frac{\pi}{4}$ (E) $\theta = \frac{\pi}{2}$

- **40.** Curve C is parameterized by $x = 5 + 3\cos t$ and $y = 3\sin t$ for $0 \le t \le \frac{\pi}{2}$. The surface area of revolution in rotating C about the x-axis is

 - (A) $6\pi\sqrt{18}$ (B) $12\pi\sqrt{18}$

- (C) 9π (D) 18π (E) $15\pi^2$

- **41.** For $0 \le \theta \le \frac{\pi}{2}$, the polar curve $r = 9\cos\theta$ has a horizontal tangent when

- (A) $\theta = 0$ (B) $\theta = \frac{\pi}{6}$ (C) $\theta = \frac{\pi}{4}$ (D) $\theta = \frac{\pi}{3}$ (E) $\theta = \frac{\pi}{2}$

- **42.** When $\theta = \frac{3\pi}{4}$, the polar curve $r = 9\cos 3\theta$ is getting
 - (A) closer to the x-axis and closer to the y-axis
 - (B) closer to the x-axis and farther away from the y-axis
 - (C) farther away from the x-axis and closer to the y-axis
 - (D) farther away from the x-axis and farther away from the y-axis
 - (E) farther away from the x-axis, and neither closer to nor farther away from the y-axis

- **43.** The area of *one* petal of the rose $r = \cos 8\theta$ is
- (A) $\frac{\pi}{64}$ (B) $\frac{\pi}{32}$ (C) $\frac{\pi}{16}$ (D) $\frac{\pi}{8}$ (E) $\frac{\pi}{4}$

44. A woman standing on a balcony 10 meters above the ground throws a flying disk upward with a speed of 20 meters per second at an angle of 45° to the horizontal. If x is the disk's horizontal distance from the woman and y is its height above the ground, then the disk's trajectory is modeled by

(A)
$$y = 10 + x + \frac{9.8x^2}{200}$$

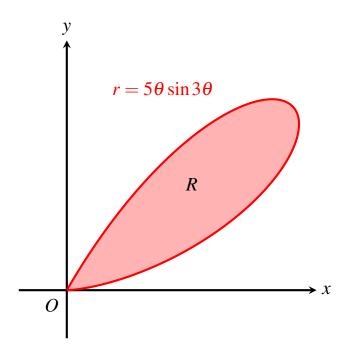
(B)
$$y = 10 + x + \frac{9.8x^2}{400}$$

(C)
$$y = 10 + x + \frac{9.8x^2}{800}$$

(D)
$$y = 10 + x - \frac{9.8x^2}{400}$$

(E)
$$y = 10 + x - \frac{9.8x^2}{800}$$

Questions 45 and 46 refer to the following region.



45. Which integral equals the area of R?

(A)
$$\frac{1}{2} \int_{-\pi/2}^{0} 25\theta^2 \sin^2 3\theta \, \mathrm{d}\theta$$

(B)
$$\frac{1}{2} \int_0^{\pi/6} 25\theta^2 \sin^2 3\theta \, \mathrm{d}\theta$$

(C)
$$\frac{1}{2} \int_0^{\pi/3} 25\theta^2 \sin^2 3\theta \, d\theta$$

(D)
$$\frac{1}{2} \int_0^{\pi/2} 25\theta^2 \sin^2 3\theta \, \mathrm{d}\theta$$

(E)
$$\frac{1}{2} \int_0^{\pi} 25\theta^2 \sin^2 3\theta \, \mathrm{d}\theta$$

- **46.** The average distance from O to any point on the boundary of R is

- (A) $\frac{5}{9}$ (B) $\frac{5}{6}$ (C) $\frac{5}{3}$ (D) $\frac{5\pi}{9}$ (E) $\frac{5\pi}{3}$

47. The region S is bounded by the line $\theta = \frac{\pi}{2}$ and the polar curve $r = 7\theta$. Which integral equals the surface area of the solid generated by rotating S about the line $\theta = \frac{\pi}{2}$?

(A)
$$49\pi \int_0^{\pi/2} \theta \sin \theta \sqrt{\theta^2 + 1} d\theta$$

(B)
$$49\pi \int_0^{\pi/2} \theta \cos \theta \sqrt{\theta^2 + 1} d\theta$$

(C)
$$98\pi \int_0^{\pi/2} \sin\theta \sqrt{\theta^2 + 1} d\theta$$

(D)
$$98\pi \int_0^{\pi/2} \theta \sin \theta \sqrt{\theta^2 + 1} d\theta$$

(E)
$$98\pi \int_0^{\pi/2} \theta \cos \theta \sqrt{\theta^2 + 1} d\theta$$

48. Which expression equals the area of the region that is inside $r = 6 - 4\cos\theta$ and also inside r = 4?

(A)
$$\int_0^{\pi} (2 - 4\cos\theta)^2 d\theta$$

(B)
$$\int_0^{\pi/3} 16 d\theta + \int_{\pi/3}^{\pi} (6 - 4\cos\theta)^2 d\theta$$

(C)
$$\int_0^{\pi/3} (6-4\cos\theta)^2 d\theta + \int_{\pi/3}^{\pi} 16d\theta$$

(D)
$$\int_0^{\pi} [(6-4\cos\theta)^2 - 16] d\theta$$

(E)
$$\int_0^{\pi} \left[16 - (6 - 4\cos\theta)^2 \right] d\theta$$

49. If C is the curve parameterized by $x = \sin t$ and $y = e^t$ for $0 \le t \le 1$, then the area between C and the x-axis is

(A)
$$\frac{e\sin 1 + e\cos 1 - 1}{2}$$

(B)
$$\frac{1+e\sin 1+e\cos 1}{2}$$

$$(C) \frac{1+e\sin 1-e\cos 1}{2}$$

$$(D) \frac{1 - e\sin 1 + e\cos 1}{2}$$

$$(E) \frac{1 - e \sin 1 - e \cos 1}{2}$$

- **50.** Let A(k) be the area that is enclosed by the polar curves $r = 6\cos\theta$ and $r = k\sin\theta$, where k is a positive constant. Then $\lim_{k\to\infty} A(k)$ is
 - (A) $\frac{9\pi}{2}$
- (B) 9π (C) 18π
- (D) 36π
- (E) nonexistent

This marks the end of the test. The following page contains the answers to all the questions.

- 1. C
- . E
- . D
- . C
- . B
- . B
- . E
- . B
- . D
- . A
- . D
- . E
- . E
- . A
- . A
- . B
- . B
- . D
- . A
- 17. 11
- . D
- . B
- . B
- . D
- . A
- . C
- . D
- . A
- . E
- . B
- . E
- . D
- . C

- . D
- . D
- . C
- . D
- . B
- . D
- . B
- . D
- . C
- . A
- . B
- . D
- . C
- . C
- . E
- . C
- . A
- . A